Talk #D16

10.-13.03.2026, 15:00 – 15:30





Robust Data Generation, Heuristics, and Machine Learning for Materials Design

J. George



Despite significant progress, computational materials design still faces major challenges—particularly when simulating advanced and chemically complex materials with the accuracy of density functional theory (DFT) or beyond.[1] To overcome these limitations, machine learning (ML) methods have gained considerable traction in recent years. We have developed robust data-generation strategies to support the creation and benchmarking of new ML models.[2] In this talk, I will highlight methods for large-scale quantum-chemical bonding analysis and workflows for ML interatomic potentials. Our work demonstrates that quantum-chemical bonding properties can be incorporated into ML models to predict phononic properties.[3] This approach enables large-scale validation of expected correlations—such as the link between bonding strength and force constants or thermal conductivities. Furthermore, we have built an automated training framework for machine-learned interatomic potentials (autoplex).[4] Initial workflows include random structure searches, suitable for general-purpose potentials, as well as specialized workflows targeting ML potentials with accurate phonon properties. While atomistic simulations are highly effective for certain material properties, others—such as magnetism or synthesizability—remain challenging. In these cases, promising strategies include benchmarking established ab initio methods against chemical heuristics or developing new ML models primarily based on experimental data.[5,6]


  1. M. K. Horton; P. Huck; R. X. Yang; J. M. Munro; S. Dwaraknath; A. M. Ganose; R. S. Kingsbury; M. Wen; J. X. Shen; T. S. Mathis; A. D. Kaplan; K. Berket; J. Riebesell; J. George; A. S. Rosen; E. W. C. Spotte-Smith; M. J. McDermott; O. A. Cohen; A. Dunn; M. C. Kuner; G.-M. Rignanese; G. Petretto; D. Waroquiers; S. M. Griffin; J. B. Neaton; D. C. Chrzan; M. Asta; G. Hautier; S. Cholia; G. Ceder; S. P. Ong; A. Jain; K. A. Persson, Nat. Mater. 2025 1–11.
  2. A. M. Ganose; H. Sahasrabuddhe; M. Asta; K. Beck; T. Biswas; A. Bonkowski; J. Bustamante; X. Chen; Y. Chiang; D. C. Chrzan; J. Clary; O. A. Cohen; C. Ertural; M. C. Gallant; J. George; S. Gerits; R. E. A. Goodall; R. D. Guha; G. Hautier; M. Horton; T. J. Inizan; A. D. Kaplan; R. S. Kingsbury; M. C. Kuner; B. Li; X. Linn; M. J. McDermott; R. S. Mohanakrishnan; A. N. Naik; J. B. Neaton; S. M. Parmar; K. A. Persson; G. Petretto; T. A. R. Purcell; F. Ricci; B. Rich; J. Riebesell; G.-M. Rignanese; A. S. Rosen; M. Scheffler; J. Schmidt; J.-X. Shen; A. Sobolev; R. Sundararaman; C. Tezak; V. Trinquet; J. B. Varley; D. Vigil-Fowler; D. Wang; D. Waroquiers; M. Wen; H. Yang; H. Zheng; J. Zheng; Z. Zhu; A. Jain, Atomate2= modular workflows for materials science Digit. Discov. 2025, 4, 1944–1973.
  3. A. A. Naik; C. Ertural; N. Dhamrait; P. Benner; J. George, Sci. Data 2023 10, 610.
  4. Y. Liu; J. D. Morrow; C. Ertural; N. L. Fragapane; J. L. A. Gardner; A. A. Naik; Y. Zhou; J. George; V. L. Deringer, Nat. Commun. 2025 16, 7666.
  5. S. Amariamir; J. George; P. Benner, Digit. Discov. 2025 4, 1437–1448.
  6. K. Ueltzen; A. A. Naik; C. Ertural; P. Benner; J. George, ChemRxiv preprint 2025 DOI:10.26434/chemrxiv-2025-xj84d.





Prof. Dr. Janine George

 Prof. Dr. Janine George


  •   University of Jena · Jena (DE)